

Assignment 2 - Techniques for working
with cloud-scale datasets
Introduction
In this exercise set you will get hands on experience with some techniques and concepts that often turn
up when working with cloud systems and data. You will be using Azure Data Lake which is a public cloud
offering based on previously internal Microsoft technology. These are tools that close to every
developer at the Microsoft office here in Tromsø has worked with at some point. World-wide, this
technology – together with other systems – power reporting and logging pipelines for most (if not all)
large Microsoft services.

You will need to implement some C# code to solve the exercises and using Visual Studio while doing this
is advisable. Visual Studio is a professional software development tool, and like open source products
like Eclipse in many ways. In this context, “professional” means that it has many powerful but complex
features, so you should expect a small learning curve to become truly efficient while working in it. Do
not let this complexity scare you; there is a lot of good documentation available online.

Prerequisites
You will need to learn about U-SQL to be able to solve exercise 2 and 3. We suggest looking at the
following tutorials and documentation.

If you want to run in the cloud:
 a) start by getting a free trial and by following this tutorial to verify your setup:
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal

b. Next, you should follow the tutorial for running U-SQL scripts from Visual Studio:
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-
started

Everyone:
At this point you have verified your Azure Subscription is working (or you don’t care and only want to
run locally), and real development can begin. You should run through the tutorial on how to test and
debug U-SQL code in Visual studio:
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-local-
run

To get more comfortable with U-SQL, see:
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-get-started

You will need to embed C# code in your U-SQL scripts. See:
https://msdn.microsoft.com/en-us/library/azure/mt621316.aspx

Exercise 1: Schema layouts and performance.
Extensibility and verbosity are often in conflict with performance when handling large amounts of data.
One situation in which this manifests itself is choosing how to represent data in a log file or stream. In
this exercise you will measure the performance differences between storing data in string and byte
array format.

Consider a computer system hosting files. Each file has an associated ACL of variable size. Each user has
a set of Claims, corresponding to entries in ACLs. Which users have access to what documents is
governed by the ACL's on files and Claims of the users. The ACL of a file and the claims of a user are both
modelled as sets of GUID's. For reasons of auditing and compliance, the computer system in this
exercise must log the set of claims of a user each time he or she attempts to access a file. The set of
claims is potentially very large (thousands).

a) Implement the method static string GenerateStringClaims(int numClaims) in
DataGeneration.cs. The method should generate a string representation of set of GUIDs with
given size. You can choose how to represent this string in any way you like, for example JSON.

b) Implement the method static List<Guid> ExtractClaims(string data) in ClaimParsing.cs, that
takes as input a set of GUIDs in string format. This method should work with your solution from a).
Run a benchmark and produce a plot showing the cost of this operation for GUID sets of variable
size. Hint: you can use the Stopwatch class to time your code, and create a ConsoleApplication
project to implement a small command line program for doing the benchmarking.

c) Implement the method static byte[] GenerateByteArrayClaims(int numClaims) in
DataGeneration.cs. The method should generate a byte array representation of a set of GUIDs
with given size. GUIDs are essentially just 128 bit numbers. C# contains efficient methods for
parsing and transforming GUIDs to and from byte array representation.

d) Implement List<Guid> ExtractClaims(byte[] data) in ClaimParsing.cs. This method should
support variable sized sets of GUIDs from c). Benchmark this method for sets sized similar to what
you chose in b), and compare the results.

e) Imagine you must handle 1000 000 000 file accesses per day, and each file access amounts to
approximately 1000 GUIDS being logged. According to the Microsoft Azure Pricing Calculator and
the difference in CPU time between the methods of b) and c), what is the estimated cost
difference over a year? Assume the following VM setup.

Exercise 2: Workload generation and log aggregates
 In this exercise we will look at typical logs from a file storage subsystem and how these can be
aggregated. Such aggregates are useful for reporting reasons, but also take up less space. As such they
are often stored much longer than the raw data from which they are created. First, however, you will
need to create a tool for generating synthetic data that can be used to simulate this workload.

a) Implement a command line tool, SystemWideFileAccessLog, that can be used to create
synthetic data for this exercise. Log entries – described by the class SystemWideLogEntry –
should have the following format:

DateTimeOfAccess, Region, TenantName, UserName, FileName, Status, Exception

You should implement both constructors for SystemWideLogEntry, one where you can dictate
the status (useful when verifying your solution in b), and one where the status is
randomized to give a reliability likely to be observed in real systems (google around a bit).
When the status of a log entry is Error, the Exception column should be populated. If the
status is OK, this column should be empty.

The Program itself should take as parameters:
The size of the output file in megabytes
The output file, e.g. myfile.tsv, to be created
The fraction of failures, where a default value indicates randomized generation

You can look at the PerFileAccessLog project for inspiration. Also look at this project for
how to use the Bogus package, which can be useful for generating exception messages.

b) For reporting purposes, it is sometimes infeasible to handle the raw (and often verbose)
logs. For this reason, it is common to create aggregates summarizing the raw numbers.
Create a U-SQL script that takes as input a log file generated with the tool from a), and
produces an output that aggregates numbers on a per-day basis. I.e., the output should
contain one log line per day present in the input. These output log lines should contain
numbers such as:

1. How many files were opened
2. How many distinct users were there
3. Calculate the distribution of calls going to different regions
4. What are the top 3 types of exceptions.
5. What are other interesting metrics you can come up with?

Exercise 3: Compliance, encryption, and probabilistic data structures
For reasons of compliance, all sensitive data (for example data that potentially can identify individuals or
organizations) must be stored in encrypted form. Further, new EU regulations - the GDPR - require that
users and/or organizations can have their data permanently deleted in a timely manner. Using the
program in the PerFileAccessLog project, you can generate log files with variable size. The generated
output is structured as follows: Each line corresponds to one file and a list of users that has modified the

file (each user is represented by an email-address). The schema of the file is:
<Date, Region, TenantName, FileName, ModifyingUsers, FirstAccess, LastAccess>

In this exercise you will transform the initial schema of the input file to an encrypted equivalent suitable
for "cold storage". This will utilize a probabilistic data structure called a bloom filter to tie the users
having accessed the file to the encrypted log-entry.

a) Write a U-SQL script to determine how many users access a file per day (average, standard
deviation, and a set of percentiles of your choice). This information will come in handy in part b).

b) In the case that a user wants to have his or her data permanently deleted, we will need to delete
that user's email address from all log lines containing it. We will leverage the bloom filter to
determine whether or not we will have to decrypt a given log entry in order to do this. If we want
a false positive rate of max 10%, how many bits will the bloom filter have to be?

c) Write a class implementing the IBloomfilter interface in IBloomfilter.cs in the Util project.
d) Write a U-SQL script that takes as input a logfile generated using the PerFileAccessLog tool, and

produces an encrypted version containing a bloom filter and the encrypted data per entry.
<Bloomfilter, EncryptedData>. You can choose your own encryption secret and use the code in
EncryptionHelper.cs from the Util project.

e) Write a U-SQL script that takes input the augmented per-file access log from d) and an email
address. The script should decrypt each line and if the email is located substitute it with
"*deleted_user*".

f) Write a U-SQL script that takes input the augmented per-file-accesslog from d) and a user email.
The script should query the bloom filter to determine whether a user is likely to be present in the
line, and if so decrypt and do the substitution from e).

g) Do a benchmark of the scripts from e) and f).
h) Encryption has cost. What is the storage overhead of doing encryption (in percent)?
i) Extra Credit: Write an alternative implementation of a bloom filter using C# generics, i.e.

Bloomfilter<T>.

