
Functional programming in F#
Jonas Juselius
11.10.2018

2

Functional programming

• History of programming
• Programming languages
• Complexity
• Lambda calculus
• Why F# and .NET Core?

3

1801 - Joseph Marie Jacquard uses punch cards to
instruct a loom to weave "hello, world" into a
tapestry.

1842 - Ada Lovelace writes the first program. She is
hampered in her efforts by the minor inconvenience
that she doesn't have any actual computers to run her
code.

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-
wrong.html

A Brief, Incomplete, and Mostly Wrong History
of Programming Languages

4

1936 - Alan Turing invents every programming language
that will ever be but is shanghaied by British Intelligence
to be 007 before he can patent them.

1936 - Alonzo Church also invents every language that
will ever be but does it better. His lambda calculus is
ignored because it is insufficiently C-like. Lambdas are
relegated to relative obscurity until Java makes them
popular by not having them.

The fundamentalists

5

1940s - Various "computers" are "programmed" using direct wiring and
switches. Engineers do this in order to avoid the tabs vs spaces debate.

Wire, wire on the wall

6

1957 - John Backus and IBM create FORTRAN. There's
nothing funny about IBM or FORTRAN.

1958 - John McCarthy and Paul Graham invent LISP. Due
to high costs caused by a post-war depletion of the
strategic parentheses reserve LISP never becomes
popular.

Greenspun's tenth rule of programming:
Any sufficiently complicated C or Fortran program contains an ad-hoc,
informally-specified, bug-ridden, slow implementation of half of Common Lisp.

Vi vs. Emacs

7

1964 - John Kemeny and Thomas Kurtz create BASIC,
an unstructured programming language for non-
computer scientists.

1965 - Kemeny and Kurtz go to 1964.

Generation 64

8

1972 - Dennis Ritchie invents a powerful gun
that shoots both forward and backward
simultaneously. Not satisfied with the number
of deaths and permanent maimings from that
invention he invents C and Unix.

C

9

1973 - Robin Milner creates ML, a language based
on the M&M type theory. ML begets SML which
has a formally specified semantics. When asked for
a formal semantics of the formal semantics Milner's
head explodes. Other well known languages in the
ML family include OCaml, F# and Haskell.

ML -> F#

10

1980 - Alan Kay creates Smalltalk and invents the term
"object oriented." When asked what that means he
replies, "Smalltalk programs are just objects." When
asked what objects are made of he replies, "objects."
When asked again he says "look, it's all objects all the way
down. Until you reach turtles."

SmallTalk

11

1983 - Bjarne Stroustrup bolts everything he's ever heard of
onto C to create C++.

1996 - James Gosling invents Java. Java is a relatively verbose,
garbage collected, class based, statically typed, single dispatch,
object oriented language with single implementation
inheritance and multiple interface inheritance. Sun loudly
heralds Java's novelty.

2001 - Anders Hejlsberg invents C#. C# is a relatively verbose,
garbage collected, class based, statically typed, single dispatch,
object oriented language with single implementation
inheritance and multiple interface inheritance. Microsoft loudly
heralds C#'s novelty.

Frequently Questioned Answers

12

1995 - Brendan Eich reads up on every
mistake ever made in designing a
programming language, invents a few
more, and creates JavaScript.

JavaScript

13

Fader Dator, som är i skyn.
Helgad vare min skärm.
Tillkomme mitt tangentbord.
Ske min vilja, såsom i editorn
Så ock i output.
Vår dagliga sprint giv oss i dag,
Och förlåt oss våra misstag,
Trots att vi icke förlåta dem som programmerat fel.
Låtom oss icke ha långa svarstider
Och fräls oss från Virus.
Ty Abstraktionen är min
Och Applikationen och Rekursionen
I Evighet.

Enter

Programming languages are tools for aiding our thought, and
expressing our intent to computers.

14

It’s not about what, it’s about how!

15

Declarative programming
• Focus on what rather than how
• Describes the problem to be solved
• Reflects how humans operate

Imperative programming
• Describes how a problem is solved
• Reflects how processors operate
• Use statements to change state
• Large degree of fine-grained control

The dyadic paradigm

16

sudoku(Rows) :-

length(Rows, 9),

maplist(same_length(Rows), Rows),

append(Rows, Vs), Vs ins 1..9,

maplist(all_distinct, Rows),

transpose(Rows, Columns),

maplist(all_distinct, Columns),

Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],

blocks(As, Bs, Cs),

blocks(Ds, Es, Fs),

blocks(Gs, Hs, Is).

blocks([], [], []).

blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-

all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]), blocks(Ns1, Ns2, Ns3).

Sudoku

Exercise: Implement this in C# and compare

17

TRANSFORM Sum(a.DocTotal) AS Income

SELECT b.project_title

FROM (

SELECT a.projectid, a.DocNo, a.CustomerID, a.DocTotal, a.DocDate

FROM Invoice AS a

INNER JOIN InvLines AS b

ON a.DocKey = b.DocKey

WHERE Year(a.DocDate) = 1999

) AS a

INNER JOIN AdvProjects AS b

ON a.projectid = b.projectid

GROUP BY b.project_title

PIVOT Month(a.DocDate);

Sequel

Exercise: Implement this in Java and compare

18

The world’s #1 programming language!

VisiCalc

C++, anyone?

19

Out of the tar pit (Moseley & Marks)

“There are two ways of constructing a software design:
One way is to make it so simple that there
are obviously no deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first method is far more
difficult”
C.A.R. Hoare (Turing award lecture 1980)

20

Complexity

1. Inherent to the problem
• Problem spesification
• Algorithms

2. Incidental to the solution
• Programming languages
• Tools, editors, debuggers
• Hardware
• Unintended interactions
• I/O

21

Simple vs. easy

22

Really?

23

No.

24

def f(x):
 x = x + 1
 y = x + 1
 return x * y

25

def f(x):
 y = x + 1
 x = x + 1
 return x * y

Im
plicit tim

e

26

def f(x):
 a = x + 1
 b = a + 1
 return a * b

27

• A function takes one input and returns
one output

• Always.
• Functions don’t have access to variables,

state or I/O
• Functions are boring

Boring is good!

Pure functions

28

Procedures and methods

29

Variable updates are dangerous!

Me at the office,
preparing to mutate a
variable

30

λ-calculus is a formal system in mathematical logic for expressing computation
based on function abstraction and application using variable binding and
substitution.
λ-calculus It is a universal model of computation that can be used to simulate any
Turing machine. λ-calculus is also Pac-Man complete.

Lambda calculus

31

Lambda calculus in practice
• No difference between functions and data
• Higher-order functions
• Pure functions without side-effects
• No variables

It’s easier to understand and reason about pure code!
(But it takes practice!)

fun n y -> n

32

Hvordan bygge kompleksistet fra enkle elementer?

Funksjoner:
•
• print(cos(exp(-1))) -1 |> exp |> cos |> print

Data:
• [1, 2, 3] + [4, 5]
• {‘icecream’: ‘vanilla’} + {‘vehicle’: ‘van’}

Objekt:
• IceCream (‘vanilla’) + Van () = ???

Komposisjon

33

Abstraksjon

Broadway Boogie Woogie (Mondrian 1943)

Abstraksjon er et begrep for det som kun kan fattes gjennom
tankene, uten direkte forbindelse med livet. Det benyttes om
tenkemåter der en skiller ut enkelte elementer, for å betrakte
resten. Det er en måte å komme fram til fellestrekk eller felles
egenskaper og klassifiseringer, såkalte universalia, på.

• Funksjoner
• Typeteori
• Kategoriteori
• Algebraiske datatyper
• Curry-Howard isomorfismen

34

OOP Pattern/Principle FP Equivalent

Single responsibility principle Functions

Open/Closed principle Functions

Dependency inversion principle Functions

Interface segregation principle Functions

Factory pattern Functions

Strategy pattern Functions

Decorator pattern Yeah, functions

Visitor pattern You guessed it, functions!

“Design patterns are bug reports against your programming language”
- Peter Norvig

35

• Et sterkt, statisk typesystem gir presis
spesifisering av lovlig input og output for
funksjoner.

• Fanger opp og forhindrer feil allerede i
kompileringsfasen

• Debugging i forkant
• Typinferens og generisk programmering
• Høyt abstraksjonsnivå

const :: a -> b -> a

36

C#: 8 devs, 5 y, 90% F#: 2 devs, 7 m, 100%

OOP vs FP

37

• Functional first, full OOP support
• Variables are explicitly declared
• Strong type system
• Algebraic data types
• First class member of .NET
• Excellent tooling
• Easy to learn
• Microsoft
• Open source

F#

38

One language for:
• Server applications
• Client applications
• Mobile applications

F# can be transpiled to JavaScript:
• Fable and WebSharper
• Reactive, asynchronous programming
• Elm and the MVU model

F#

39

The F# ecosystem

“Simplicity is the prerequisite of reliability”
E. Dijkstra

41

• The value of values (Rich Hickey)
• Simple made easy (Rich Hickey)
• F# for Fun and Profit (Scott Wlaschin)
• Stop writing classes (Jack Diederich)
• Beating the averages (Paul Graham)
• Out of the tar pit (Moseley & Marks 2006)

The goodie bag

